Basic invariants
Dimension: | $16$ |
Group: | $S_6$ |
Conductor: | \(640\!\cdots\!000\)\(\medspace = 2^{30} \cdot 5^{24} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.12500000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | 36T1252 |
Parity: | even |
Determinant: | 1.1.1t1.a.a |
Projective image: | $S_6$ |
Projective stem field: | Galois closure of 6.2.12500000.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - 3x^{5} + 5x^{4} - 5x^{3} + 10x^{2} - 4x - 8 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$:
\( x^{2} + 45x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 45 a + 25 + \left(3 a + 23\right)\cdot 47 + \left(29 a + 13\right)\cdot 47^{2} + \left(7 a + 1\right)\cdot 47^{3} + \left(24 a + 25\right)\cdot 47^{4} +O(47^{5})\)
$r_{ 2 }$ |
$=$ |
\( 8 + 8\cdot 47 + 45\cdot 47^{2} + 9\cdot 47^{3} +O(47^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 2 a + 21 + \left(43 a + 33\right)\cdot 47 + \left(17 a + 20\right)\cdot 47^{2} + \left(39 a + 34\right)\cdot 47^{3} + \left(22 a + 18\right)\cdot 47^{4} +O(47^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 15 + 38\cdot 47 + 20\cdot 47^{2} + 41\cdot 47^{3} + 12\cdot 47^{4} +O(47^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 7 a + 7 + \left(18 a + 4\right)\cdot 47 + \left(39 a + 37\right)\cdot 47^{2} + \left(29 a + 16\right)\cdot 47^{3} + \left(44 a + 12\right)\cdot 47^{4} +O(47^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 40 a + 21 + \left(28 a + 33\right)\cdot 47 + \left(7 a + 3\right)\cdot 47^{2} + \left(17 a + 37\right)\cdot 47^{3} + \left(2 a + 24\right)\cdot 47^{4} +O(47^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $16$ |
$15$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$15$ | $2$ | $(1,2)$ | $0$ |
$45$ | $2$ | $(1,2)(3,4)$ | $0$ |
$40$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
$40$ | $3$ | $(1,2,3)$ | $-2$ |
$90$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
$90$ | $4$ | $(1,2,3,4)$ | $0$ |
$144$ | $5$ | $(1,2,3,4,5)$ | $1$ |
$120$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
$120$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.