Basic invariants
| Dimension: | $14$ |
| Group: | $S_7$ |
| Conductor: | \(429\!\cdots\!887\)\(\medspace = 29^{9} \cdot 6763^{9} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 7.1.196127.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 30T565 |
| Parity: | odd |
| Determinant: | 1.196127.2t1.a.a |
| Projective image: | $S_7$ |
| Projective stem field: | Galois closure of 7.1.196127.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{7} - 2x^{6} + 2x^{5} - x^{4} + 2x^{2} - 2x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$:
\( x^{2} + 38x + 6 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 6 + 33\cdot 41 + 25\cdot 41^{2} + 11\cdot 41^{3} + 38\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 13 a + 36 + \left(17 a + 40\right)\cdot 41 + \left(19 a + 22\right)\cdot 41^{2} + \left(3 a + 3\right)\cdot 41^{3} + 20\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 27 a + \left(5 a + 19\right)\cdot 41 + \left(29 a + 2\right)\cdot 41^{2} + \left(30 a + 21\right)\cdot 41^{3} + \left(20 a + 17\right)\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 14 a + 40 + \left(35 a + 8\right)\cdot 41 + \left(11 a + 2\right)\cdot 41^{2} + \left(10 a + 2\right)\cdot 41^{3} + \left(20 a + 8\right)\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 24 a + 30 + \left(9 a + 29\right)\cdot 41 + \left(4 a + 21\right)\cdot 41^{2} + \left(30 a + 22\right)\cdot 41^{3} + \left(3 a + 20\right)\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 28 a + 34 + \left(23 a + 38\right)\cdot 41 + \left(21 a + 22\right)\cdot 41^{2} + \left(37 a + 35\right)\cdot 41^{3} + \left(40 a + 16\right)\cdot 41^{4} +O(41^{5})\)
|
| $r_{ 7 }$ | $=$ |
\( 17 a + 20 + \left(31 a + 34\right)\cdot 41 + \left(36 a + 24\right)\cdot 41^{2} + \left(10 a + 26\right)\cdot 41^{3} + \left(37 a + 1\right)\cdot 41^{4} +O(41^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 7 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 7 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $14$ | |
| $21$ | $2$ | $(1,2)$ | $-4$ | |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ | ✓ |
| $105$ | $2$ | $(1,2)(3,4)$ | $2$ | |
| $70$ | $3$ | $(1,2,3)$ | $-1$ | |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $2$ | |
| $210$ | $4$ | $(1,2,3,4)$ | $2$ | |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ | |
| $504$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ | |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $-1$ | |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ | |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ | |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $1$ | |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $-1$ |