Normalized defining polynomial
\( x^{7} - 2x^{6} + 2x^{5} - x^{4} + 2x^{2} - 2x + 1 \)
Invariants
| Degree: | $7$ |
| |
| Signature: | $[1, 3]$ |
| |
| Discriminant: |
\(-196127\)
\(\medspace = -\,29\cdot 6763\)
|
| |
| Root discriminant: | \(5.70\) |
| |
| Galois root discriminant: | $29^{1/2}6763^{1/2}\approx 442.86228107618285$ | ||
| Ramified primes: |
\(29\), \(6763\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-196127}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$a$, $a^{5}-a^{4}+1$, $a^{6}-2a^{5}+a^{4}+a-1$
|
| |
| Regulator: | \( 0.396915724261 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{3}\cdot 0.396915724261 \cdot 1}{2\cdot\sqrt{196127}}\cr\approx \mathstrut & 0.2223152305550 \end{aligned}\]
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for $S_7$ |
| Character table for $S_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 14 sibling: | deg 14 |
| Degree 21 sibling: | deg 21 |
| Degree 30 sibling: | deg 30 |
| Degree 35 sibling: | deg 35 |
| Degree 42 siblings: | deg 42, deg 42, deg 42, some data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.7.0.1}{7} }$ | ${\href{/padicField/3.7.0.1}{7} }$ | ${\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.3.0.1}{3} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }$ | ${\href{/padicField/11.7.0.1}{7} }$ | ${\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/31.5.0.1}{5} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.2.0.1}{2} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.4.0.1}{4} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(29\)
| 29.2.1.0a1.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 29.1.2.1a1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 29.3.1.0a1.1 | $x^{3} + 2 x + 27$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
|
\(6763\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *5040 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| 1.196127.2t1.a.a | $1$ | $ 29 \cdot 6763 $ | \(\Q(\sqrt{-196127}) \) | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 6.290...407.14t46.a.a | $6$ | $ 29^{5} \cdot 6763^{5}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $0$ | |
| *5040 | 6.196127.7t7.a.a | $6$ | $ 29 \cdot 6763 $ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $0$ |
| 14.147...641.21t38.a.a | $14$ | $ 29^{4} \cdot 6763^{4}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $2$ | |
| 14.842...649.42t413.a.a | $14$ | $ 29^{10} \cdot 6763^{10}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $-2$ | |
| 14.429...887.30t565.a.a | $14$ | $ 29^{9} \cdot 6763^{9}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $0$ | |
| 14.290...407.30t565.a.a | $14$ | $ 29^{5} \cdot 6763^{5}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $0$ | |
| 15.290...407.42t412.a.a | $15$ | $ 29^{5} \cdot 6763^{5}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $-3$ | |
| 15.842...649.42t411.a.a | $15$ | $ 29^{10} \cdot 6763^{10}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $3$ | |
| 20.842...649.70.a.a | $20$ | $ 29^{10} \cdot 6763^{10}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $0$ | |
| 21.842...649.84.a.a | $21$ | $ 29^{10} \cdot 6763^{10}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $-3$ | |
| 21.165...423.42t418.a.a | $21$ | $ 29^{11} \cdot 6763^{11}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $3$ | |
| 35.709...201.126.a.a | $35$ | $ 29^{20} \cdot 6763^{20}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $-1$ | |
| 35.244...143.70.a.a | $35$ | $ 29^{15} \cdot 6763^{15}$ | 7.1.196127.1 | $S_7$ (as 7T7) | $1$ | $1$ |