Basic invariants
| Dimension: | $1$ |
| Group: | $C_2$ |
| Conductor: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin field: | Galois closure of \(\Q(\sqrt{-210}) \) |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $C_2$ |
| Parity: | odd |
| Dirichlet character: | \(\displaystyle\left(\frac{-840}{\bullet}\right)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{2} + 210 \)
|
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 14 + 14\cdot 29 + 7\cdot 29^{2} + 7\cdot 29^{3} + 27\cdot 29^{4} +O(29^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 15 + 14\cdot 29 + 21\cdot 29^{2} + 21\cdot 29^{3} + 29^{4} +O(29^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $ r_{ 1 }, r_{ 2 } $ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | |
| $1$ | $2$ | $(1,2)$ | $-1$ | ✓ |