Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
Artin field: | Galois closure of 4.4.39546000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | even |
Dirichlet character: | \(\chi_{780}(83,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - 195x^{2} + 2340 \)
|
The roots of $f$ are computed in $\Q_{ 29 }$ to precision 6.
Roots:
$r_{ 1 }$ | $=$ |
\( 1 + 5\cdot 29 + 6\cdot 29^{2} + 25\cdot 29^{3} + 13\cdot 29^{4} + 3\cdot 29^{5} +O(29^{6})\)
|
$r_{ 2 }$ | $=$ |
\( 7 + 10\cdot 29 + 23\cdot 29^{2} + 12\cdot 29^{3} + 10\cdot 29^{4} + 26\cdot 29^{5} +O(29^{6})\)
|
$r_{ 3 }$ | $=$ |
\( 22 + 18\cdot 29 + 5\cdot 29^{2} + 16\cdot 29^{3} + 18\cdot 29^{4} + 2\cdot 29^{5} +O(29^{6})\)
|
$r_{ 4 }$ | $=$ |
\( 28 + 23\cdot 29 + 22\cdot 29^{2} + 3\cdot 29^{3} + 15\cdot 29^{4} + 25\cdot 29^{5} +O(29^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | ✓ |
$1$ | $2$ | $(1,4)(2,3)$ | $-1$ | |
$1$ | $4$ | $(1,3,4,2)$ | $\zeta_{4}$ | |
$1$ | $4$ | $(1,2,4,3)$ | $-\zeta_{4}$ |