Properties

Label 1.777.6t1.b.b
Dimension $1$
Group $C_6$
Conductor $777$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(777\)\(\medspace = 3 \cdot 7 \cdot 37 \)
Artin field: Galois closure of 6.0.121496235147.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{777}(158,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 87x^{4} + 182x^{3} + 7348x^{2} + 4128x + 2304 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: \( x^{2} + 82x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 16 + \left(6 a + 38\right)\cdot 89 + \left(a + 62\right)\cdot 89^{2} + \left(32 a + 61\right)\cdot 89^{3} + \left(39 a + 35\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 47 a + 17 + \left(66 a + 85\right)\cdot 89 + \left(46 a + 63\right)\cdot 89^{2} + \left(64 a + 60\right)\cdot 89^{3} + \left(58 a + 18\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 85 a + 44 + \left(82 a + 76\right)\cdot 89 + \left(87 a + 63\right)\cdot 89^{2} + \left(56 a + 17\right)\cdot 89^{3} + \left(49 a + 12\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 49 a + 18 + \left(16 a + 15\right)\cdot 89 + \left(26 a + 15\right)\cdot 89^{2} + \left(66 a + 12\right)\cdot 89^{3} + \left(14 a + 77\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 42 a + 79 + \left(22 a + 58\right)\cdot 89 + \left(42 a + 57\right)\cdot 89^{2} + \left(24 a + 20\right)\cdot 89^{3} + \left(30 a + 9\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 40 a + 5 + \left(72 a + 82\right)\cdot 89 + \left(62 a + 3\right)\cdot 89^{2} + \left(22 a + 5\right)\cdot 89^{3} + \left(74 a + 25\right)\cdot 89^{4} +O(89^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,5,3,4,2)$
$(1,3)(2,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,3)(2,5)(4,6)$$-1$
$1$$3$$(1,5,4)(2,6,3)$$-\zeta_{3} - 1$
$1$$3$$(1,4,5)(2,3,6)$$\zeta_{3}$
$1$$6$$(1,6,5,3,4,2)$$-\zeta_{3}$
$1$$6$$(1,2,4,3,5,6)$$\zeta_{3} + 1$