Properties

Label 1.72.6t1.c.b
Dimension $1$
Group $C_6$
Conductor $72$
Root number not computed
Indicator $0$

Related objects

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(72\)\(\medspace = 2^{3} \cdot 3^{2}\)
Artin field: 6.0.10077696.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{72}(5,\cdot)\)
Projective image: $C_1$
Projective field: \(\Q\)

Defining polynomial

$f(x)$$=$\(x^{6} + 12 x^{4} + 36 x^{2} + 24\)  Toggle raw display.

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \(x^{2} + 16 x + 3\)  Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 16 a + 9 + \left(3 a + 14\right)\cdot 17 + \left(8 a + 14\right)\cdot 17^{2} + \left(3 a + 10\right)\cdot 17^{3} + \left(9 a + 5\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 2 }$ $=$ \( 14 a + 10 + \left(16 a + 15\right)\cdot 17 + \left(6 a + 4\right)\cdot 17^{2} + \left(14 a + 13\right)\cdot 17^{3} + \left(14 a + 16\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 15 + \left(13 a + 3\right)\cdot 17 + \left(a + 14\right)\cdot 17^{2} + \left(16 a + 9\right)\cdot 17^{3} + \left(9 a + 11\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 4 }$ $=$ \( a + 8 + \left(13 a + 2\right)\cdot 17 + \left(8 a + 2\right)\cdot 17^{2} + \left(13 a + 6\right)\cdot 17^{3} + \left(7 a + 11\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 7 + 17 + \left(10 a + 12\right)\cdot 17^{2} + \left(2 a + 3\right)\cdot 17^{3} + 2 a\cdot 17^{4} +O(17^{5})\)  Toggle raw display
$r_{ 6 }$ $=$ \( 13 a + 2 + \left(3 a + 13\right)\cdot 17 + \left(15 a + 2\right)\cdot 17^{2} + 7\cdot 17^{3} + \left(7 a + 5\right)\cdot 17^{4} +O(17^{5})\)  Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,4)(2,5)(3,6)$$-1$
$1$$3$$(1,3,2)(4,6,5)$$-\zeta_{3} - 1$
$1$$3$$(1,2,3)(4,5,6)$$\zeta_{3}$
$1$$6$$(1,6,2,4,3,5)$$\zeta_{3} + 1$
$1$$6$$(1,5,3,4,2,6)$$-\zeta_{3}$

The blue line marks the conjugacy class containing complex conjugation.