Properties

Label 1.671.5t1.a
Dimension $1$
Group $C_5$
Conductor $671$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$1$
Group:$C_5$
Conductor:\(671\)\(\medspace = 11 \cdot 61 \)
Artin number field: Galois closure of 5.5.202716958081.1
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ \( 7 + 88\cdot 109 + 32\cdot 109^{2} + 26\cdot 109^{3} + 33\cdot 109^{4} + 70\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 + 21\cdot 109 + 80\cdot 109^{2} + 8\cdot 109^{3} + 40\cdot 109^{4} + 75\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 30 + 94\cdot 109 + 14\cdot 109^{2} + 78\cdot 109^{3} + 68\cdot 109^{4} + 79\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 75 + 5\cdot 109 + 17\cdot 109^{2} + 16\cdot 109^{3} + 32\cdot 109^{4} + 12\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 94 + 8\cdot 109 + 73\cdot 109^{2} + 88\cdot 109^{3} + 43\cdot 109^{4} + 89\cdot 109^{5} +O(109^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$ $c2$ $c3$ $c4$
$1$ $1$ $()$ $1$ $1$ $1$ $1$
$1$ $5$ $(1,3,5,2,4)$ $\zeta_{5}$ $\zeta_{5}^{2}$ $\zeta_{5}^{3}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$ $5$ $(1,5,4,3,2)$ $\zeta_{5}^{2}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}$ $\zeta_{5}^{3}$
$1$ $5$ $(1,2,3,4,5)$ $\zeta_{5}^{3}$ $\zeta_{5}$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{2}$
$1$ $5$ $(1,4,2,5,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ $\zeta_{5}^{3}$ $\zeta_{5}^{2}$ $\zeta_{5}$
The blue line marks the conjugacy class containing complex conjugation.