Basic invariants
| Dimension: | $1$ |
| Group: | $C_4$ |
| Conductor: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
| Artin field: | Galois closure of 4.4.35152.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $C_4$ |
| Parity: | even |
| Dirichlet character: | \(\chi_{52}(31,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - 13x^{2} + 13 \)
|
The roots of $f$ are computed in $\Q_{ 23 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 + 8\cdot 23 + 13\cdot 23^{2} + 20\cdot 23^{3} + 4\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 3 + 10\cdot 23 + 17\cdot 23^{2} + 8\cdot 23^{3} + 20\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 20 + 12\cdot 23 + 5\cdot 23^{2} + 14\cdot 23^{3} + 2\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 21 + 14\cdot 23 + 9\cdot 23^{2} + 2\cdot 23^{3} + 18\cdot 23^{4} +O(23^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | ✓ |
| $1$ | $2$ | $(1,4)(2,3)$ | $-1$ | |
| $1$ | $4$ | $(1,2,4,3)$ | $\zeta_{4}$ | |
| $1$ | $4$ | $(1,3,4,2)$ | $-\zeta_{4}$ |