Properties

Label 1.341.5t1.d.d
Dimension $1$
Group $C_5$
Conductor $341$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_5$
Conductor: \(341\)\(\medspace = 11 \cdot 31 \)
Artin field: Galois closure of 5.5.13521270961.4
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Dirichlet character: \(\chi_{341}(159,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} - 136x^{3} + 641x^{2} - 371x - 67 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 13\cdot 67 + 61\cdot 67^{2} + 54\cdot 67^{3} + 26\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 1 + 44\cdot 67 + 59\cdot 67^{2} + 11\cdot 67^{3} + 43\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 25 + 43\cdot 67 + 27\cdot 67^{2} + 31\cdot 67^{3} + 15\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 53 + 48\cdot 67 + 37\cdot 67^{2} + 30\cdot 67^{3} + 18\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 56 + 51\cdot 67 + 14\cdot 67^{2} + 5\cdot 67^{3} + 30\cdot 67^{4} +O(67^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,3,5,4,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$5$$(1,3,5,4,2)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,5,2,3,4)$$\zeta_{5}^{3}$
$1$$5$$(1,4,3,2,5)$$\zeta_{5}^{2}$
$1$$5$$(1,2,4,5,3)$$\zeta_{5}$