Properties

Label 1.315.6t1.a.b
Dimension $1$
Group $C_6$
Conductor $315$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(315\)\(\medspace = 3^{2} \cdot 5 \cdot 7 \)
Artin field: Galois closure of 6.6.1969120125.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: even
Dirichlet character: \(\chi_{315}(184,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} - 42x^{4} + 33x^{3} + 462x^{2} + 501x - 71 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 19 a + 28 + \left(21 a + 31\right)\cdot 47 + \left(29 a + 11\right)\cdot 47^{2} + \left(9 a + 40\right)\cdot 47^{3} + \left(30 a + 10\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 28 a + 32 + \left(25 a + 2\right)\cdot 47 + \left(17 a + 43\right)\cdot 47^{2} + \left(37 a + 30\right)\cdot 47^{3} + \left(16 a + 42\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 a + 40 + 21 a\cdot 47 + \left(29 a + 44\right)\cdot 47^{2} + \left(9 a + 27\right)\cdot 47^{3} + \left(30 a + 38\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 19 a + 41 + \left(21 a + 25\right)\cdot 47 + \left(29 a + 5\right)\cdot 47^{2} + \left(9 a + 41\right)\cdot 47^{3} + \left(30 a + 38\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 28 a + 19 + \left(25 a + 8\right)\cdot 47 + \left(17 a + 2\right)\cdot 47^{2} + \left(37 a + 30\right)\cdot 47^{3} + \left(16 a + 14\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 28 a + 31 + \left(25 a + 24\right)\cdot 47 + \left(17 a + 34\right)\cdot 47^{2} + \left(37 a + 17\right)\cdot 47^{3} + \left(16 a + 42\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,4)(3,6)$
$(1,6,4,5,3,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,5)(2,4)(3,6)$$-1$
$1$$3$$(1,4,3)(2,6,5)$$-\zeta_{3} - 1$
$1$$3$$(1,3,4)(2,5,6)$$\zeta_{3}$
$1$$6$$(1,6,4,5,3,2)$$-\zeta_{3}$
$1$$6$$(1,2,3,5,4,6)$$\zeta_{3} + 1$