Properties

Label 1.312.6t1.a.a
Dimension $1$
Group $C_6$
Conductor $312$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \)
Artin field: Galois closure of 6.0.394827264.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{312}(269,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 11x^{4} - 18x^{3} + 138x^{2} + 20x + 625 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 5 a + 9 + \left(24 a + 38\right)\cdot 47 + \left(8 a + 19\right)\cdot 47^{2} + \left(33 a + 26\right)\cdot 47^{3} + \left(2 a + 25\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 20 + \left(24 a + 1\right)\cdot 47 + \left(8 a + 7\right)\cdot 47^{2} + \left(33 a + 39\right)\cdot 47^{3} + \left(2 a + 41\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 a + 4 + \left(24 a + 13\right)\cdot 47 + \left(8 a + 7\right)\cdot 47^{2} + \left(33 a + 12\right)\cdot 47^{3} + \left(2 a + 21\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 42 a + 30 + \left(22 a + 44\right)\cdot 47 + \left(38 a + 46\right)\cdot 47^{2} + \left(13 a + 2\right)\cdot 47^{3} + \left(44 a + 14\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 42 a + 14 + \left(22 a + 9\right)\cdot 47 + 38 a\cdot 47^{2} + \left(13 a + 23\right)\cdot 47^{3} + \left(44 a + 40\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 42 a + 19 + \left(22 a + 34\right)\cdot 47 + \left(38 a + 12\right)\cdot 47^{2} + \left(13 a + 37\right)\cdot 47^{3} + \left(44 a + 44\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(2,4)(3,5)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,6)(2,4)(3,5)$$-1$
$1$$3$$(1,3,2)(4,6,5)$$\zeta_{3}$
$1$$3$$(1,2,3)(4,5,6)$$-\zeta_{3} - 1$
$1$$6$$(1,5,2,6,3,4)$$-\zeta_{3}$
$1$$6$$(1,4,3,6,2,5)$$\zeta_{3} + 1$