Properties

Label 1.275.5t1.a.b
Dimension $1$
Group $C_5$
Conductor $275$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_5$
Conductor: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Artin field: Galois closure of 5.5.5719140625.1
Galois orbit size: $4$
Smallest permutation container: $C_5$
Parity: even
Dirichlet character: \(\chi_{275}(256,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{5} - 110x^{3} - 605x^{2} - 990x - 451 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 31 }$ to precision 6.

Roots:
$r_{ 1 }$ $=$ \( 11 + 18\cdot 31 + 16\cdot 31^{2} + 8\cdot 31^{3} + 4\cdot 31^{4} + 27\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 + 30\cdot 31 + 22\cdot 31^{2} + 13\cdot 31^{3} + 23\cdot 31^{4} + 8\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 + 20\cdot 31 + 19\cdot 31^{2} + 4\cdot 31^{3} + 8\cdot 31^{4} + 19\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 22\cdot 31 + 16\cdot 31^{2} + 11\cdot 31^{3} + 31^{4} + 24\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 27 + 17\cdot 31^{2} + 23\cdot 31^{3} + 24\cdot 31^{4} + 13\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,5,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$5$$(1,2,5,3,4)$$\zeta_{5}^{2}$
$1$$5$$(1,5,4,2,3)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,3,2,4,5)$$\zeta_{5}$
$1$$5$$(1,4,3,5,2)$$\zeta_{5}^{3}$