Properties

Label 1.275.10t1.a.a
Dimension $1$
Group $C_{10}$
Conductor $275$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_{10}$
Conductor: \(275\)\(\medspace = 5^{2} \cdot 11 \)
Artin field: Galois closure of 10.0.24574432373046875.1
Galois orbit size: $4$
Smallest permutation container: $C_{10}$
Parity: odd
Dirichlet character: \(\chi_{275}(21,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{10} - 5x^{9} + 5x^{8} + 90x^{6} - 148x^{5} + 610x^{4} - 175x^{3} + 2325x^{2} - 1625x + 5965 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{5} + 3x + 18 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a^{4} + 4 a^{3} + 4 a^{2} + 15 a + 1 + \left(13 a^{4} + 16 a^{3} + 7 a^{2} + 16 a + 8\right)\cdot 23 + \left(11 a^{4} + 5 a^{3} + 10 a^{2} + 18 a + 21\right)\cdot 23^{2} + \left(19 a^{4} + 14 a^{3} + 4 a^{2} + 16 a + 12\right)\cdot 23^{3} + \left(21 a^{4} + 19 a^{3} + 7 a^{2} + 13 a + 21\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 a^{4} + 4 a^{3} + 4 a^{2} + 15 a + 10 + \left(13 a^{4} + 16 a^{3} + 7 a^{2} + 16 a + 18\right)\cdot 23 + \left(11 a^{4} + 5 a^{3} + 10 a^{2} + 18 a + 15\right)\cdot 23^{2} + \left(19 a^{4} + 14 a^{3} + 4 a^{2} + 16 a + 11\right)\cdot 23^{3} + \left(21 a^{4} + 19 a^{3} + 7 a^{2} + 13 a\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a^{4} + 5 a^{3} + 17 a^{2} + 1 + \left(20 a^{3} + 10 a^{2} + 15 a + 15\right)\cdot 23 + \left(15 a^{4} + 18 a^{3} + 5 a^{2} + 7 a + 5\right)\cdot 23^{2} + \left(11 a^{4} + a^{3} + 2 a^{2} + 5 a + 11\right)\cdot 23^{3} + \left(6 a^{4} + 21 a^{3} + 12 a^{2} + 18 a\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a^{4} + 5 a^{3} + 17 a^{2} + 15 + \left(20 a^{3} + 10 a^{2} + 15 a + 4\right)\cdot 23 + \left(15 a^{4} + 18 a^{3} + 5 a^{2} + 7 a + 11\right)\cdot 23^{2} + \left(11 a^{4} + a^{3} + 2 a^{2} + 5 a + 12\right)\cdot 23^{3} + \left(6 a^{4} + 21 a^{3} + 12 a^{2} + 18 a + 21\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 9 a^{4} + 21 a^{3} + 11 a^{2} + 9 a + 13 + \left(4 a^{4} + 18 a^{3} + 2 a^{2} + 13 a + 14\right)\cdot 23 + \left(15 a^{4} + 6 a^{3} + 21 a^{2} + 2 a + 11\right)\cdot 23^{2} + \left(6 a^{4} + 12 a^{3} + 3 a^{2} + 7 a\right)\cdot 23^{3} + \left(13 a^{4} + 3 a^{3} + a^{2} + 17 a + 1\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 9 a^{4} + 21 a^{3} + 11 a^{2} + 9 a + 22 + \left(4 a^{4} + 18 a^{3} + 2 a^{2} + 13 a + 1\right)\cdot 23 + \left(15 a^{4} + 6 a^{3} + 21 a^{2} + 2 a + 6\right)\cdot 23^{2} + \left(6 a^{4} + 12 a^{3} + 3 a^{2} + 7 a + 22\right)\cdot 23^{3} + \left(13 a^{4} + 3 a^{3} + a^{2} + 17 a + 2\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 12 a^{4} + 18 a^{3} + 18 a^{2} + 20 a + 11 + \left(7 a^{4} + 7 a^{3} + 17 a^{2} + 21 a + 17\right)\cdot 23 + \left(11 a^{4} + 22 a^{3} + 22 a + 20\right)\cdot 23^{2} + \left(14 a^{4} + 13 a^{3} + 6 a^{2} + 17 a\right)\cdot 23^{3} + \left(a^{4} + 15 a^{3} + 11 a^{2} + 20 a + 19\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 12 a^{4} + 18 a^{3} + 18 a^{2} + 20 a + 20 + \left(7 a^{4} + 7 a^{3} + 17 a^{2} + 21 a + 4\right)\cdot 23 + \left(11 a^{4} + 22 a^{3} + 22 a + 15\right)\cdot 23^{2} + \left(14 a^{4} + 13 a^{3} + 6 a^{2} + 17 a + 22\right)\cdot 23^{3} + \left(a^{4} + 15 a^{3} + 11 a^{2} + 20 a + 20\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 15 a^{4} + 21 a^{3} + 19 a^{2} + 2 a + 9 + \left(20 a^{4} + 5 a^{3} + 7 a^{2} + 2 a + 21\right)\cdot 23 + \left(15 a^{4} + 15 a^{3} + 8 a^{2} + 17 a + 17\right)\cdot 23^{2} + \left(16 a^{4} + 3 a^{3} + 6 a^{2} + 21 a + 10\right)\cdot 23^{3} + \left(2 a^{4} + 9 a^{3} + 14 a^{2} + 21 a + 12\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 15 a^{4} + 21 a^{3} + 19 a^{2} + 2 a + 18 + \left(20 a^{4} + 5 a^{3} + 7 a^{2} + 2 a + 8\right)\cdot 23 + \left(15 a^{4} + 15 a^{3} + 8 a^{2} + 17 a + 12\right)\cdot 23^{2} + \left(16 a^{4} + 3 a^{3} + 6 a^{2} + 21 a + 9\right)\cdot 23^{3} + \left(2 a^{4} + 9 a^{3} + 14 a^{2} + 21 a + 14\right)\cdot 23^{4} +O(23^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 10 }$

Cycle notation
$(1,4,5,7,9)(2,3,6,8,10)$
$(1,2)(3,4)(5,6)(7,8)(9,10)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 10 }$ Character valueComplex conjugation
$1$$1$$()$$1$
$1$$2$$(1,2)(3,4)(5,6)(7,8)(9,10)$$-1$
$1$$5$$(1,4,5,7,9)(2,3,6,8,10)$$\zeta_{5}^{2}$
$1$$5$$(1,5,9,4,7)(2,6,10,3,8)$$-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$
$1$$5$$(1,7,4,9,5)(2,8,3,10,6)$$\zeta_{5}$
$1$$5$$(1,9,7,5,4)(2,10,8,6,3)$$\zeta_{5}^{3}$
$1$$10$$(1,3,5,8,9,2,4,6,7,10)$$-\zeta_{5}^{2}$
$1$$10$$(1,8,4,10,5,2,7,3,9,6)$$-\zeta_{5}$
$1$$10$$(1,6,9,3,7,2,5,10,4,8)$$\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$
$1$$10$$(1,10,7,6,4,2,9,8,5,3)$$-\zeta_{5}^{3}$