Basic invariants
| Dimension: | $1$ |
| Group: | $C_{10}$ |
| Conductor: | \(275\)\(\medspace = 5^{2} \cdot 11 \) |
| Artin field: | Galois closure of 10.0.24574432373046875.1 |
| Galois orbit size: | $4$ |
| Smallest permutation container: | $C_{10}$ |
| Parity: | odd |
| Dirichlet character: | \(\chi_{275}(21,\cdot)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{10} - 5x^{9} + 5x^{8} + 90x^{6} - 148x^{5} + 610x^{4} - 175x^{3} + 2325x^{2} - 1625x + 5965 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{5} + 3x + 18 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 4 a^{4} + 4 a^{3} + 4 a^{2} + 15 a + 1 + \left(13 a^{4} + 16 a^{3} + 7 a^{2} + 16 a + 8\right)\cdot 23 + \left(11 a^{4} + 5 a^{3} + 10 a^{2} + 18 a + 21\right)\cdot 23^{2} + \left(19 a^{4} + 14 a^{3} + 4 a^{2} + 16 a + 12\right)\cdot 23^{3} + \left(21 a^{4} + 19 a^{3} + 7 a^{2} + 13 a + 21\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 4 a^{4} + 4 a^{3} + 4 a^{2} + 15 a + 10 + \left(13 a^{4} + 16 a^{3} + 7 a^{2} + 16 a + 18\right)\cdot 23 + \left(11 a^{4} + 5 a^{3} + 10 a^{2} + 18 a + 15\right)\cdot 23^{2} + \left(19 a^{4} + 14 a^{3} + 4 a^{2} + 16 a + 11\right)\cdot 23^{3} + \left(21 a^{4} + 19 a^{3} + 7 a^{2} + 13 a\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 6 a^{4} + 5 a^{3} + 17 a^{2} + 1 + \left(20 a^{3} + 10 a^{2} + 15 a + 15\right)\cdot 23 + \left(15 a^{4} + 18 a^{3} + 5 a^{2} + 7 a + 5\right)\cdot 23^{2} + \left(11 a^{4} + a^{3} + 2 a^{2} + 5 a + 11\right)\cdot 23^{3} + \left(6 a^{4} + 21 a^{3} + 12 a^{2} + 18 a\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 6 a^{4} + 5 a^{3} + 17 a^{2} + 15 + \left(20 a^{3} + 10 a^{2} + 15 a + 4\right)\cdot 23 + \left(15 a^{4} + 18 a^{3} + 5 a^{2} + 7 a + 11\right)\cdot 23^{2} + \left(11 a^{4} + a^{3} + 2 a^{2} + 5 a + 12\right)\cdot 23^{3} + \left(6 a^{4} + 21 a^{3} + 12 a^{2} + 18 a + 21\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 5 }$ | $=$ |
\( 9 a^{4} + 21 a^{3} + 11 a^{2} + 9 a + 13 + \left(4 a^{4} + 18 a^{3} + 2 a^{2} + 13 a + 14\right)\cdot 23 + \left(15 a^{4} + 6 a^{3} + 21 a^{2} + 2 a + 11\right)\cdot 23^{2} + \left(6 a^{4} + 12 a^{3} + 3 a^{2} + 7 a\right)\cdot 23^{3} + \left(13 a^{4} + 3 a^{3} + a^{2} + 17 a + 1\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 6 }$ | $=$ |
\( 9 a^{4} + 21 a^{3} + 11 a^{2} + 9 a + 22 + \left(4 a^{4} + 18 a^{3} + 2 a^{2} + 13 a + 1\right)\cdot 23 + \left(15 a^{4} + 6 a^{3} + 21 a^{2} + 2 a + 6\right)\cdot 23^{2} + \left(6 a^{4} + 12 a^{3} + 3 a^{2} + 7 a + 22\right)\cdot 23^{3} + \left(13 a^{4} + 3 a^{3} + a^{2} + 17 a + 2\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 7 }$ | $=$ |
\( 12 a^{4} + 18 a^{3} + 18 a^{2} + 20 a + 11 + \left(7 a^{4} + 7 a^{3} + 17 a^{2} + 21 a + 17\right)\cdot 23 + \left(11 a^{4} + 22 a^{3} + 22 a + 20\right)\cdot 23^{2} + \left(14 a^{4} + 13 a^{3} + 6 a^{2} + 17 a\right)\cdot 23^{3} + \left(a^{4} + 15 a^{3} + 11 a^{2} + 20 a + 19\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 8 }$ | $=$ |
\( 12 a^{4} + 18 a^{3} + 18 a^{2} + 20 a + 20 + \left(7 a^{4} + 7 a^{3} + 17 a^{2} + 21 a + 4\right)\cdot 23 + \left(11 a^{4} + 22 a^{3} + 22 a + 15\right)\cdot 23^{2} + \left(14 a^{4} + 13 a^{3} + 6 a^{2} + 17 a + 22\right)\cdot 23^{3} + \left(a^{4} + 15 a^{3} + 11 a^{2} + 20 a + 20\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 9 }$ | $=$ |
\( 15 a^{4} + 21 a^{3} + 19 a^{2} + 2 a + 9 + \left(20 a^{4} + 5 a^{3} + 7 a^{2} + 2 a + 21\right)\cdot 23 + \left(15 a^{4} + 15 a^{3} + 8 a^{2} + 17 a + 17\right)\cdot 23^{2} + \left(16 a^{4} + 3 a^{3} + 6 a^{2} + 21 a + 10\right)\cdot 23^{3} + \left(2 a^{4} + 9 a^{3} + 14 a^{2} + 21 a + 12\right)\cdot 23^{4} +O(23^{5})\)
|
| $r_{ 10 }$ | $=$ |
\( 15 a^{4} + 21 a^{3} + 19 a^{2} + 2 a + 18 + \left(20 a^{4} + 5 a^{3} + 7 a^{2} + 2 a + 8\right)\cdot 23 + \left(15 a^{4} + 15 a^{3} + 8 a^{2} + 17 a + 12\right)\cdot 23^{2} + \left(16 a^{4} + 3 a^{3} + 6 a^{2} + 21 a + 9\right)\cdot 23^{3} + \left(2 a^{4} + 9 a^{3} + 14 a^{2} + 21 a + 14\right)\cdot 23^{4} +O(23^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 10 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 10 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | |
| $1$ | $2$ | $(1,2)(3,4)(5,6)(7,8)(9,10)$ | $-1$ | ✓ |
| $1$ | $5$ | $(1,4,5,7,9)(2,3,6,8,10)$ | $\zeta_{5}^{2}$ | |
| $1$ | $5$ | $(1,5,9,4,7)(2,6,10,3,8)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2} - \zeta_{5} - 1$ | |
| $1$ | $5$ | $(1,7,4,9,5)(2,8,3,10,6)$ | $\zeta_{5}$ | |
| $1$ | $5$ | $(1,9,7,5,4)(2,10,8,6,3)$ | $\zeta_{5}^{3}$ | |
| $1$ | $10$ | $(1,3,5,8,9,2,4,6,7,10)$ | $-\zeta_{5}^{2}$ | |
| $1$ | $10$ | $(1,8,4,10,5,2,7,3,9,6)$ | $-\zeta_{5}$ | |
| $1$ | $10$ | $(1,6,9,3,7,2,5,10,4,8)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + \zeta_{5} + 1$ | |
| $1$ | $10$ | $(1,10,7,6,4,2,9,8,5,3)$ | $-\zeta_{5}^{3}$ |