Properties

Label 1.273.6t1.d.a
Dimension $1$
Group $C_6$
Conductor $273$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $1$
Group: $C_6$
Conductor: \(273\)\(\medspace = 3 \cdot 7 \cdot 13 \)
Artin field: Galois closure of 6.0.1851523947.1
Galois orbit size: $2$
Smallest permutation container: $C_6$
Parity: odd
Dirichlet character: \(\chi_{273}(191,\cdot)\)
Projective image: $C_1$
Projective field: Galois closure of \(\Q\)

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 31x^{4} + 84x^{3} + 873x^{2} + 810x + 729 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{2} + 7x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 5 + a\cdot 11 + \left(9 a + 5\right)\cdot 11^{2} + \left(5 a + 10\right)\cdot 11^{3} + \left(3 a + 10\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 5 a + 9 + \left(5 a + 1\right)\cdot 11 + \left(a + 1\right)\cdot 11^{2} + \left(3 a + 2\right)\cdot 11^{3} + \left(2 a + 2\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a + 10 + \left(9 a + 1\right)\cdot 11 + \left(a + 7\right)\cdot 11^{2} + \left(5 a + 2\right)\cdot 11^{3} + \left(7 a + 8\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + 7 + \left(5 a + 7\right)\cdot 11 + \left(9 a + 1\right)\cdot 11^{2} + \left(7 a + 2\right)\cdot 11^{3} + \left(8 a + 8\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 1 + \left(a + 4\right)\cdot 11 + \left(a + 7\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + 9\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 8 a + 2 + \left(9 a + 6\right)\cdot 11 + \left(9 a + 10\right)\cdot 11^{2} + \left(4 a + 2\right)\cdot 11^{3} + \left(10 a + 5\right)\cdot 11^{4} +O(11^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$1$
$1$$2$$(1,3)(2,4)(5,6)$$-1$
$1$$3$$(1,2,5)(3,4,6)$$\zeta_{3}$
$1$$3$$(1,5,2)(3,6,4)$$-\zeta_{3} - 1$
$1$$6$$(1,4,5,3,2,6)$$-\zeta_{3}$
$1$$6$$(1,6,2,3,5,4)$$\zeta_{3} + 1$

The blue line marks the conjugacy class containing complex conjugation.