Basic invariants
Dimension: | $1$ |
Group: | $C_4$ |
Conductor: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Artin field: | Galois closure of 4.4.2304000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $C_4$ |
Parity: | even |
Dirichlet character: | \(\chi_{240}(197,\cdot)\) |
Projective image: | $C_1$ |
Projective field: | Galois closure of \(\Q\) |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} - 60x^{2} + 90 \)
|
The roots of $f$ are computed in $\Q_{ 31 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ |
\( 1 + 27\cdot 31 + 16\cdot 31^{2} + 5\cdot 31^{3} + 2\cdot 31^{4} +O(31^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 11 + 20\cdot 31 + 24\cdot 31^{2} + 17\cdot 31^{3} + 24\cdot 31^{4} +O(31^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 20 + 10\cdot 31 + 6\cdot 31^{2} + 13\cdot 31^{3} + 6\cdot 31^{4} +O(31^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 30 + 3\cdot 31 + 14\cdot 31^{2} + 25\cdot 31^{3} + 28\cdot 31^{4} +O(31^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $1$ | ✓ |
$1$ | $2$ | $(1,4)(2,3)$ | $-1$ | |
$1$ | $4$ | $(1,3,4,2)$ | $-\zeta_{4}$ | |
$1$ | $4$ | $(1,2,4,3)$ | $\zeta_{4}$ |