Basic invariants
| Dimension: | $1$ |
| Group: | $C_2$ |
| Conductor: | \(15063\)\(\medspace = 3 \cdot 5021 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin field: | Galois closure of \(\Q(\sqrt{-15063}) \) |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $C_2$ |
| Parity: | odd |
| Dirichlet character: | \(\displaystyle\left(\frac{-15063}{\bullet}\right)\) |
| Projective image: | $C_1$ |
| Projective field: | Galois closure of \(\Q\) |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{2} - x + 3766 \)
|
The roots of $f$ are computed in $\Q_{ 7 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 6\cdot 7 + 2\cdot 7^{3} + 5\cdot 7^{4} +O(7^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 1 + 7 + 6\cdot 7^{2} + 4\cdot 7^{3} + 7^{4} +O(7^{5})\)
|
Generators of the action on the roots $ r_{ 1 }, r_{ 2 } $
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $ r_{ 1 }, r_{ 2 } $ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $1$ | |
| $1$ | $2$ | $(1,2)$ | $-1$ | ✓ |