Defining polynomial over unramified subextension
| $x^{6} + 7d_{0}$ |
Invariants
| Residue field characteristic: | $7$ |
| Degree: | $18$ |
| Base field: | $\Q_{7}$ |
| Ramification index $e$: | $6$ |
| Residue field degree $f$: | $3$ |
| Discriminant exponent $c$: | $15$ |
| Artin slopes: | $[\ ]$ |
| Swan slopes: | $[\ ]$ |
| Means: | $\langle\ \rangle$ |
| Rams: | $(\ )$ |
| Field count: | $6$ (complete) |
| Ambiguity: | $18$ |
| Mass: | $1$ |
| Absolute Mass: | $1/3$ |
Varying
| Indices of inseparability: | $[0]$ |
| Associated inertia: | $[1]$ |
| Jump Set: | undefined (show 5), $[1]$ (show 1) |
Galois groups and Hidden Artin slopes
Fields
Showing all 1
Download displayed columns for results| Label | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
|---|---|---|---|---|---|---|---|---|
| 7.3.6.15a1.3 | $( x^{3} + 6 x^{2} + 4 )^{6} + 7$ | $C_6 \times C_3$ (as 18T2) | $18$ | $18$ | $[\ ]$ | $[0]$ | $[1]$ | $[1]$ |