Properties

Label 7.2.1.0a1.1-1.11.10a
Base 7.2.1.0a1.1
Degree \(11\)
e \(11\)
f \(1\)
c \(10\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{11} + 7$

Invariants

Residue field characteristic: $7$
Degree: $11$
Base field: $\Q_{7}(\sqrt{3})$
Ramification index $e$: $11$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.

Galois group: $F_{11}$
Hidden Artin slopes: $[\ ]^{5}$
Indices of inseparability: $[0]$
Associated inertia: $[5]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
7.2.11.20a1.1 $( x^{2} + 6 x + 3 )^{11} + 7$ $F_{11}$ (as 22T4) $110$ $2$ $[\ ]_{11}^{10}$ $[\ ]_{11}^{10}$ $[\ ]^{5}$ $[\ ]^{5}$ $[0]$ $[5]$ $z^{10} + 4 z^9 + 6 z^8 + 4 z^7 + z^6 + z^3 + 4 z^2 + 6 z + 4$ undefined
  displayed columns for results