Properties

Label 7.2.11.20a1.1
Base \(\Q_{7}\)
Degree \(22\)
e \(11\)
f \(2\)
c \(20\)
Galois group $F_{11}$ (as 22T4)

Related objects

Downloads

Learn more

Defining polynomial

$( x^{2} + 6 x + 3 )^{11} + 7$ Copy content Toggle raw display

Invariants

Base field: $\Q_{7}$
Degree $d$: $22$
Ramification index $e$: $11$
Residue field degree $f$: $2$
Discriminant exponent $c$: $20$
Discriminant root field: $\Q_{7}(\sqrt{3})$
Root number: $1$
$\Aut(K/\Q_{7})$: $C_2$
This field is not Galois over $\Q_{7}.$
Visible Artin slopes:$[\ ]$
Visible Swan slopes:$[\ ]$
Means:$\langle\ \rangle$
Rams:$(\ )$
Jump set:undefined
Roots of unity:$48 = (7^{ 2 } - 1)$

Intermediate fields

$\Q_{7}(\sqrt{3})$, 7.1.11.10a1.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Canonical tower

Unramified subfield:$\Q_{7}(\sqrt{3})$ $\cong \Q_{7}(t)$ where $t$ is a root of \( x^{2} + 6 x + 3 \) Copy content Toggle raw display
Relative Eisenstein polynomial: \( x^{11} + 7 \) $\ \in\Q_{7}(t)[x]$ Copy content Toggle raw display

Ramification polygon

Residual polynomials:$z^{10} + 4 z^9 + 6 z^8 + 4 z^7 + z^6 + z^3 + 4 z^2 + 6 z + 4$
Associated inertia:$5$
Indices of inseparability:$[0]$

Invariants of the Galois closure

Galois degree: $110$
Galois group: $F_{11}$ (as 22T4)
Inertia group: Intransitive group isomorphic to $C_{11}$
Wild inertia group: $C_1$
Galois unramified degree: $10$
Galois tame degree: $11$
Galois Artin slopes: $[\ ]$
Galois Swan slopes: $[\ ]$
Galois mean slope: $0.9090909090909091$
Galois splitting model:not computed