Properties

Label 7.2.1.0a1.1-1.10.9a
Base 7.2.1.0a1.1
Degree \(10\)
e \(10\)
f \(1\)
c \(9\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{10} + 7d_{0}$

Invariants

Residue field characteristic: $7$
Degree: $10$
Base field: $\Q_{7}(\sqrt{3})$
Ramification index $e$: $10$
Residue field degree $f$: $1$
Discriminant exponent $c$: $9$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.

Galois group: $C_2\times F_5$ (show 1), $C_2\times F_5$ (show 1)
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[0]$
Associated inertia: $[2]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
7.2.10.18a1.1 $( x^{2} + 6 x + 3 )^{10} + 7 x$ $C_2\times F_5$ (as 20T9) $40$ $4$ $[\ ]_{10}^{4}$ $[\ ]_{10}^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^9 + 3 z^8 + 3 z^7 + z^6 + z^2 + 3 z + 3$ undefined
7.2.10.18a1.2 $( x^{2} + 6 x + 3 )^{10} + 7$ $C_2\times F_5$ (as 20T13) $40$ $4$ $[\ ]_{10}^{4}$ $[\ ]_{10}^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[0]$ $[2]$ $z^9 + 3 z^8 + 3 z^7 + z^6 + z^2 + 3 z + 3$ undefined
  displayed columns for results