Defining polynomial over unramified subextension
$x^{10} + 7d_{0}$ |
Invariants
Residue field characteristic: | $7$ |
Degree: | $20$ |
Base field: | $\Q_{7}$ |
Ramification index $e$: | $10$ |
Residue field degree $f$: | $2$ |
Discriminant exponent $c$: | $18$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $2$ (complete) |
Ambiguity: | $4$ |
Mass: | $1$ |
Absolute Mass: | $1/2$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[2]$ |
Jump Set: | undefined |
Galois groups and Hidden Artin slopes
Fields
Showing all 2
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
7.2.10.18a1.1 | $( x^{2} + 6 x + 3 )^{10} + 7 x$ | $C_2\times F_5$ (as 20T9) | $40$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |
7.2.10.18a1.2 | $( x^{2} + 6 x + 3 )^{10} + 7$ | $C_2\times F_5$ (as 20T13) | $40$ | $4$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | undefined |