Properties

Label 7.1.7.10a1.2-1.2.1a
Base 7.1.7.10a1.2
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $7$
Degree: $2$
Base field: 7.1.7.10a1.2
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[\frac{5}{3}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 7 }$ within this relative family, not the relative extension.

Galois group: $F_7 \times C_2$
Hidden Artin slopes: $[\ ]^{2}_{3}$
Indices of inseparability: $[8,0]$
Associated inertia: $[1,2]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
7.1.14.21a1.5 $x^{14} + 35 x^{8} + 7$ $F_7 \times C_2$ (as 14T7) $84$ $2$ $[\frac{5}{3}]_{6}^{2}$ $[\frac{2}{3}]_{6}^{2}$ $[\ ]^{2}_{3}$ $[\ ]^{2}_{3}$ $[8, 0]$ $[1, 2]$ $z^7 + 2,2 z^2 + 2$ undefined
7.1.14.21a1.17 $x^{14} + 14 x^{8} + 21$ $F_7 \times C_2$ (as 14T7) $84$ $2$ $[\frac{5}{3}]_{6}^{2}$ $[\frac{2}{3}]_{6}^{2}$ $[\ ]^{2}_{3}$ $[\ ]^{2}_{3}$ $[8, 0]$ $[1, 2]$ $z^7 + 2,2 z^2 + 4$ undefined
  displayed columns for results