Defining polynomial
$x^{12} + 7d_{0}$ |
Invariants
Residue field characteristic: | $7$ |
Degree: | $12$ |
Base field: | $\Q_{7}$ |
Ramification index $e$: | $12$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $11$ |
Artin slopes: | $[\ ]$ |
Swan slopes: | $[\ ]$ |
Means: | $\langle\ \rangle$ |
Rams: | $(\ )$ |
Field count: | $6$ (complete) |
Ambiguity: | $6$ |
Mass: | $1$ |
Absolute Mass: | $1$ |
Varying
Indices of inseparability: | $[0]$ |
Associated inertia: | $[2]$ |
Jump Set: | undefined (show 5), $[2]$ (show 1) |
Galois groups and Hidden Artin slopes
Fields
Showing all 1
Download displayed columns for resultsLabel | Polynomial | Galois group | Galois degree | $\#\Aut(K/\Q_p)$ | Hidden Artin slopes | Ind. of Insep. | Assoc. Inertia | Jump Set |
---|---|---|---|---|---|---|---|---|
7.1.12.11a1.1 | $x^{12} + 7$ | $D_4 \times C_3$ (as 12T14) | $24$ | $6$ | $[\ ]^{2}$ | $[0]$ | $[2]$ | $[2]$ |