Properties

Label 5.1.16.15a
Base 5.1.1.0a1.1
Degree \(16\)
e \(16\)
f \(1\)
c \(15\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{16} + 5d_{0}$

Invariants

Residue field characteristic: $5$
Degree: $16$
Base field: $\Q_{5}$
Ramification index $e$: $16$
Residue field degree $f$: $1$
Discriminant exponent $c$: $15$
Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $4$ (complete)
Ambiguity: $4$
Mass: $1$
Absolute Mass: $1$

Varying

Indices of inseparability: $[0]$
Associated inertia: $[4]$
Jump Set: undefined (show 3), $[4]$ (show 1)

Galois groups and Hidden Artin slopes

Fields


Showing all 1

  displayed columns for results
Label Packet size Polynomial Galois group Galois degree $\#\Aut(K/\Q_p)$ Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
5.1.16.15a1.1 $x^{16} + 5$ $C_{16}:C_4$ (as 16T125) $64$ $4$ $[\ ]_{16}^{4}$ $[\ ]_{16}^{4}$ $[\ ]^{4}$ $[\ ]^{4}$ $[0]$ $[4]$ $z^{15} + z^{14} + 3 z^{10} + 3 z^9 + 3 z^5 + 3 z^4 + 1$ $[4]$
  displayed columns for results