Properties

Label 41.1.2.1a1.2-1.9.8a
Base 41.1.2.1a1.2
Degree \(9\)
e \(9\)
f \(1\)
c \(8\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{9} + \pi$

Invariants

Residue field characteristic: $41$
Degree: $9$
Base field: $\Q_{41}(\sqrt{41\cdot 3})$
Ramification index $e$: $9$
Residue field degree $f$: $1$
Discriminant exponent $c$: $8$
Absolute Artin slopes: $[\ ]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $1$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 41 }$ within this relative family, not the relative extension.

Galois group: $C_{18}:C_6$
Hidden Artin slopes: $[\ ]^{6}$
Indices of inseparability: $[0]$
Associated inertia: $[6]$
Jump Set: undefined

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
41.1.18.17a1.2 $x^{18} + 246$ $C_{18}:C_6$ (as 18T45) $108$ $2$ $[\ ]_{18}^{6}$ $[\ ]_{18}^{6}$ $[\ ]^{6}$ $[\ ]^{6}$ $[0]$ $[6]$ $z^{17} + 18 z^{16} + 30 z^{15} + 37 z^{14} + 26 z^{13} + 40 z^{12} + 32 z^{11} + 8 z^{10} + 11 z^9 + 35 z^8 + 11 z^7 + 8 z^6 + 32 z^5 + 40 z^4 + 26 z^3 + 37 z^2 + 30 z + 18$ undefined
  displayed columns for results