These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
3.1.12.19a2.26 |
$x^{12} + 3 x^{10} + 3 x^{8} + 15$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
3.1.12.19a2.32 |
$x^{12} + 6 x^{10} + 3 x^{8} + 15$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
undefined |
Download
displayed columns for
results