Properties

Label 3.1.6.9a1.11-1.2.1a
Base 3.1.6.9a1.11
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.1.6.9a1.11
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[2]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_6\wr C_2$
Hidden Artin slopes: $[\frac{3}{2}]^{2}$
Indices of inseparability: $[8,0]$
Associated inertia: $[2,1]$
Jump Set: undefined

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.1.12.19a2.26 $x^{12} + 3 x^{10} + 3 x^{8} + 15$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[\frac{3}{2}, 2]_{4}^{2}$ $[\frac{1}{2},1]_{4}^{2}$ $[\frac{3}{2}]^{2}$ $[\frac{1}{2}]^{2}$ $[8, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ undefined
3.1.12.19a2.32 $x^{12} + 6 x^{10} + 3 x^{8} + 15$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[\frac{3}{2}, 2]_{4}^{2}$ $[\frac{1}{2},1]_{4}^{2}$ $[\frac{3}{2}]^{2}$ $[\frac{1}{2}]^{2}$ $[8, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ undefined
  displayed columns for results