Properties

Label 3.1.6.11a1.7-1.2.1a
Base 3.1.6.11a1.7
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.1.6.11a1.7
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[\frac{5}{2}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_6\wr C_2$
Hidden Artin slopes: $[2]^{2}$
Indices of inseparability: $[12,0]$
Associated inertia: $[2,1]$
Jump Set: $[2,14]$

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.1.12.23a2.19 $x^{12} + 9 x^{2} + 3$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[2, \frac{5}{2}]_{4}^{2}$ $[1,\frac{3}{2}]_{4}^{2}$ $[2]^{2}$ $[1]^{2}$ $[12, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ $[2, 14]$
3.1.12.23a2.37 $x^{12} + 18 x^{2} + 3$ $C_6\wr C_2$ (as 12T42) $72$ $6$ $[2, \frac{5}{2}]_{4}^{2}$ $[1,\frac{3}{2}]_{4}^{2}$ $[2]^{2}$ $[1]^{2}$ $[12, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ $[2, 14]$
  displayed columns for results