These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
3.1.12.23a2.19 |
$x^{12} + 9 x^{2} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[2, \frac{5}{2}]_{4}^{2}$ |
$[1,\frac{3}{2}]_{4}^{2}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[12, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 14]$ |
3.1.12.23a2.37 |
$x^{12} + 18 x^{2} + 3$ |
$C_6\wr C_2$ (as 12T42) |
$72$ |
$6$ |
$[2, \frac{5}{2}]_{4}^{2}$ |
$[1,\frac{3}{2}]_{4}^{2}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[12, 0]$ |
$[2, 1]$ |
$z^9 + z^6 + 1,z^2 + 2$ |
$[2, 14]$ |
Download
displayed columns for
results