Properties

Label 3.1.3.4a2.3-1.4.3a
Base 3.1.3.4a2.3
Degree \(4\)
e \(4\)
f \(1\)
c \(3\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{4} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $4$
Base field: 3.1.3.4a2.3
Ramification index $e$: $4$
Residue field degree $f$: $1$
Discriminant exponent $c$: $3$
Absolute Artin slopes: $[2]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $D_4 \times C_3$
Hidden Artin slopes: $[\ ]^{2}$
Indices of inseparability: $[8,0]$
Associated inertia: $[2,1]$
Jump Set: undefined (show 1), $[2,18]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.1.12.19a2.3 $x^{12} + 6 x^{8} + 21$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2]_{4}^{2}$ $[1]_{4}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[8, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ $[2, 18]$
3.1.12.19a2.19 $x^{12} + 3 x^{8} + 6$ $D_4 \times C_3$ (as 12T14) $24$ $6$ $[2]_{4}^{2}$ $[1]_{4}^{2}$ $[\ ]^{2}$ $[\ ]^{2}$ $[8, 0]$ $[2, 1]$ $z^9 + z^6 + 1,z^2 + 2$ undefined
  displayed columns for results