Properties

Label 3.1.3.4a2.1-1.2.1a
Base 3.1.3.4a2.1
Degree \(2\)
e \(2\)
f \(1\)
c \(1\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + d_{0} \pi$

Invariants

Residue field characteristic: $3$
Degree: $2$
Base field: 3.1.3.4a2.1
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $1$
Absolute Artin slopes: $[2]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $2$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/3$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 3 }$ within this relative family, not the relative extension.

Galois group: $C_6$
Hidden Artin slopes: $[\ ]$
Indices of inseparability: $[4,0]$
Associated inertia: $[1,1]$
Jump Set: undefined (show 1), $[1,3]$ (show 1)

Fields


Showing all 2

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
3.1.6.9a1.1 $x^{6} + 6 x^{4} + 3$ $C_6$ (as 6T1) $6$ $6$ $[2]_{2}$ $[1]_{2}$ $[\ ]$ $[\ ]$ $[4, 0]$ $[1, 1]$ $z^3 + 2,2 z^2 + 1$ $[1, 3]$
3.1.6.9a1.9 $x^{6} + 3 x^{4} + 24$ $C_6$ (as 6T1) $6$ $6$ $[2]_{2}$ $[1]_{2}$ $[\ ]$ $[\ ]$ $[4, 0]$ $[1, 1]$ $z^3 + 2,2 z^2 + 1$ undefined
  displayed columns for results