$x^{6} + 3 b_{5} x^{5} + 3 a_{4} x^{4} + 3 d_{0} + 9 c_{6}$ |
Indices of inseparability: | $[4,0]$ |
Associated inertia: | $[1,1]$ (show 12), $[1,2]$ (show 4) |
Jump Set: | undefined (show 8), $[1,3]$ (show 1), $[1,7]$ (show 2), $[1,8]$ (show 3), $[1,9]$ (show 2) |
Select desired size of Galois group.
| | Galois groups of order 6 |
|
|
$C_6$ (as 6T1) |
hidden slopes
|
$[\ ]$ |
6 |
|
| | Galois groups of order 12 |
|
|
$D_6$ (as 6T3) |
hidden slopes
|
$[\ ]^{2}$ |
2 |
|
| | Galois groups of order 36 |
|
|
$S_3^2$ (as 6T9) |
hidden slopes
|
$[\frac{3}{2}]^{2}$ |
2 |
|
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.6.9a1.1 |
6 |
$x^{6} + 6 x^{4} + 3$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 3]$ |
3.1.6.9a1.2 |
6 |
$x^{6} + 6 x^{4} + 12$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 9]$ |
3.1.6.9a1.3 |
6 |
$x^{6} + 6 x^{4} + 21$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 9]$ |
3.1.6.9a1.4 |
6 |
$x^{6} + 3 x^{5} + 6 x^{4} + 3$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 8]$ |
3.1.6.9a1.5 |
6 |
$x^{6} + 3 x^{5} + 6 x^{4} + 12$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 8]$ |
3.1.6.9a1.6 |
6 |
$x^{6} + 3 x^{5} + 6 x^{4} + 21$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
$[1, 8]$ |
3.1.6.9a1.7 |
6 |
$x^{6} + 3 x^{4} + 6$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a1.8 |
6 |
$x^{6} + 3 x^{4} + 15$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a1.9 |
6 |
$x^{6} + 3 x^{4} + 24$ |
$C_6$ (as 6T1) |
$6$ |
$6$ |
$[2]_{2}$ |
$[1]_{2}$ |
$[\ ]$ |
$[\ ]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a1.10 |
6 |
$x^{6} + 3 x^{5} + 3 x^{4} + 6$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a1.11 |
6 |
$x^{6} + 3 x^{5} + 3 x^{4} + 15$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a1.12 |
6 |
$x^{6} + 3 x^{5} + 3 x^{4} + 24$ |
$S_3\times C_3$ (as 6T5) |
$18$ |
$3$ |
$[\frac{3}{2}, 2]_{2}$ |
$[\frac{1}{2},1]_{2}$ |
$[\frac{3}{2}]$ |
$[\frac{1}{2}]$ |
$[4, 0]$ |
$[1, 1]$ |
$z^3 + 2,2 z^2 + 1$ |
undefined |
3.1.6.9a2.1 |
2 |
$x^{6} + 3 x^{4} + 3$ |
$D_{6}$ (as 6T3) |
$12$ |
$2$ |
$[2]_{2}^{2}$ |
$[1]_{2}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[4, 0]$ |
$[1, 2]$ |
$z^3 + 2,2 z^2 + 2$ |
$[1, 7]$ |
3.1.6.9a2.2 |
2 |
$x^{6} + 3 x^{5} + 3 x^{4} + 3$ |
$S_3^2$ (as 6T9) |
$36$ |
$1$ |
$[\frac{3}{2}, 2]_{2}^{2}$ |
$[\frac{1}{2},1]_{2}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[4, 0]$ |
$[1, 2]$ |
$z^3 + 2,2 z^2 + 2$ |
$[1, 7]$ |
3.1.6.9a2.3 |
2 |
$x^{6} + 6 x^{4} + 6$ |
$D_{6}$ (as 6T3) |
$12$ |
$2$ |
$[2]_{2}^{2}$ |
$[1]_{2}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[4, 0]$ |
$[1, 2]$ |
$z^3 + 2,2 z^2 + 2$ |
undefined |
3.1.6.9a2.4 |
2 |
$x^{6} + 3 x^{5} + 6 x^{4} + 6$ |
$S_3^2$ (as 6T9) |
$36$ |
$1$ |
$[\frac{3}{2}, 2]_{2}^{2}$ |
$[\frac{1}{2},1]_{2}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[4, 0]$ |
$[1, 2]$ |
$z^3 + 2,2 z^2 + 2$ |
undefined |
Download
displayed columns for
results