Select desired size of Galois group.
Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
3.1.12.19a1.1 |
2 |
$x^{12} + 3 x^{8} + 3$ |
$D_{12}$ (as 12T12) |
$24$ |
$2$ |
$[2]_{4}^{2}$ |
$[1]_{4}^{2}$ |
$[\ ]^{2}$ |
$[\ ]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.2 |
2 |
$x^{12} + 3 x^{11} + 3 x^{8} + 3$ |
$C_3^2:D_{12}$ (as 12T118) |
$216$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4}]^{2}$ |
$[\frac{1}{4},\frac{1}{4}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.3 |
4 |
$x^{12} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.4 |
4 |
$x^{12} + 3 x^{11} + 3 x^{10} + 3 x^{8} + 3$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.5 |
4 |
$x^{12} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3:D_{12}$ (as 12T38) |
$72$ |
$2$ |
$[\frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{2},1]_{4}^{2}$ |
$[\frac{3}{2}]^{2}$ |
$[\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |
3.1.12.19a1.6 |
4 |
$x^{12} + 3 x^{11} + 6 x^{10} + 3 x^{8} + 3$ |
$C_3^3:D_{12}$ (as 12T169) |
$648$ |
$1$ |
$[\frac{5}{4}, \frac{5}{4}, \frac{3}{2}, 2]_{4}^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2},1]_{4}^{2}$ |
$[\frac{5}{4},\frac{5}{4},\frac{3}{2}]^{2}$ |
$[\frac{1}{4},\frac{1}{4},\frac{1}{2}]^{2}$ |
$[8, 0]$ |
$[2, 2]$ |
$z^9 + z^6 + 1,z^2 + 1$ |
$[2, 14]$ |