Defining polynomial
$x^{4} + \left(b_{15} \pi^{4} + a_{11} \pi^{3}\right) x^{3} + \left(b_{10} \pi^{3} + a_{6} \pi^{2}\right) x^{2} + b_{13} \pi^{4} x + c_{16} \pi^{5} + c_{12} \pi^{4} + \pi$ |
Invariants
Residue field characteristic: | $2$ |
Degree: | $4$ |
Base field: | 2.5.2.10a2.1 |
Ramification index $e$: | $4$ |
Residue field degree $f$: | $1$ |
Discriminant exponent $c$: | $14$ |
Absolute Artin slopes: | $[2,3,\frac{7}{2}]$ |
Swan slopes: | $[3,4]$ |
Means: | $\langle\frac{3}{2},\frac{11}{4}\rangle$ |
Rams: | $(3,5)$ |
Field count: | $0$ (incomplete) |
Ambiguity: | $4$ |
Mass: | $31490048$ |
Absolute Mass: | $15745024$ ($0$ currently in the LMFDB) |
Diagrams
The LMFDB does not contain any fields from this family.