Properties

Label 2.2.4.22a1.81-2.1.0a
Base 2.2.4.22a1.81
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.2.4.22a1.81
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[3,4]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/4$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^5:C_4$
Hidden Artin slopes: $[2,2,\frac{7}{2}]$
Indices of inseparability: $[8,4,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,7]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.4.4.44a1.1943 $( x^{4} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{4} + x + 1 )^{3} + \left(4 x^{2} + 4 x + 4\right) ( x^{4} + x + 1 )^{2} + 2$ $C_2^5:C_4$ (as 16T227) $128$ $4$ $[2, 2, 3, \frac{7}{2}, 4]^{4}$ $[1,1,2,\frac{5}{2},3]^{4}$ $[2,2,\frac{7}{2}]$ $[1,1,\frac{5}{2}]$ $[8, 4, 0]$ $[1, 1]$ $z^2 + 1,z + 1$ $[1, 3, 7]$
  displayed columns for results