These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.4.4.44a1.1943 |
$( x^{4} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{4} + x + 1 )^{3} + \left(4 x^{2} + 4 x + 4\right) ( x^{4} + x + 1 )^{2} + 2$ |
$C_2^5:C_4$ (as 16T227) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]$ |
$[1,1,\frac{5}{2}]$ |
$[8, 4, 0]$ |
$[1, 1]$ |
$z^2 + 1,z + 1$ |
$[1, 3, 7]$ |
Download
displayed columns for
results