These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.52c1.205 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.206 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.390 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.391 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 4 ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.402 |
$( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{5} + \left(12 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.403 |
$( x^{2} + x + 1 )^{8} + 8 ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{5} + \left(12 x + 4\right) ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.405 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c1.408 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{7} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{5} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T912) |
$512$ |
$4$ |
$[2, 2, 3, 3, 3, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,2,\frac{5}{2},3]^{4}$ |
$[2,2,3,3]^{2}$ |
$[1,1,2,2]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.115 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.116 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.133 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.134 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.155 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.156 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.189 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.190 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 8 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,3,\frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.494 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.495 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.513 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.516 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + 8 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.550 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.551 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 x ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.569 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |
| 2.2.8.52c5.572 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 8 x ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ |
$C_2^5.D_4$ (as 16T633) |
$256$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4]^{4}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3]^{4}$ |
$[2,2,\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2}]^{2}$ |
$[19, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + (t + 1)$ |
$[1, 3, 7, 15]$ |