| $( x^{2} + x + 1 )^{8} + 8 x ( x^{2} + x + 1 )^{7} + 12 ( x^{2} + x + 1 )^{5} + 12 x ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 ) + 8 x + 2$ ![Copy content]()  ![Toggle raw display]()  | 
  | Base field: | $\Q_{2}$ | 
| Degree $d$: | $16$ | 
      | Ramification index $e$: | $8$ | 
      | Residue field degree $f$: | $2$ | 
      | Discriminant exponent $c$: | $52$ | 
      | Discriminant root field: | $\Q_{2}$ | 
      | Root number: | $-1$ | 
        | $\Aut(K/\Q_{2})$: | $C_2^2$ | 
    
      | This field is not Galois over $\Q_{2}.$ | 
      | Visible Artin slopes: | $[3, \frac{7}{2}, 4]$ | 
      | Visible Swan slopes: | $[2,\frac{5}{2},3]$ | 
      | Means: | $\langle1, \frac{7}{4}, \frac{19}{8}\rangle$ | 
      | Rams: | $(2, 3, 5)$ | 
      | Jump set: | $[1, 3, 7, 15]$ | 
      | Roots of unity: | $6 = (2^{ 2 } - 1) \cdot 2$ | 
  Fields in the database are given up to isomorphism.  Isomorphic 
  intermediate fields are shown with their multiplicities.
  | Unramified subfield: | $\Q_{2}(\sqrt{5})$ $\cong \Q_{2}(t)$ where $t$ is a root of 
    \( x^{2} + x + 1 \) ![Copy content]()  ![Toggle raw display]()  | 
  | Relative Eisenstein polynomial: | \( x^{8} + \left(8 t + 8\right) x^{7} + 4 x^{6} + 8 x^{5} + 12 t x^{4} + 8 x^{3} + 8 t x^{2} + 8 t + 2 \)
    
    $\ \in\Q_{2}(t)[x]$ ![Copy content]()  ![Toggle raw display]()  | 
       
    
  
  | Galois degree: | $512$ | 
  | Galois group: | $C_2^6.D_4$ (as 16T912) | 
  | Inertia group: | Intransitive group isomorphic to $C_2^4.D_4$ | 
  | Wild inertia group: | $C_2^4.D_4$ | 
  | Galois unramified degree: | $4$ | 
  | Galois tame degree: | $1$ | 
  | Galois Artin slopes: | $[2, 2, 3, 3, 3, \frac{7}{2}, 4]$ | 
| Galois Swan slopes: | $[1,1,2,2,2,\frac{5}{2},3]$ | 
  | Galois mean slope: | $3.578125$ | 
  | Galois splitting model: | $x^{16} + 8 x^{14} - 40 x^{13} + 118 x^{12} - 200 x^{11} + 956 x^{10} - 2720 x^{9} + 5185 x^{8} - 10080 x^{7} + 25796 x^{6} - 45920 x^{5} + 72938 x^{4} - 93960 x^{3} + 74828 x^{2} - 5760 x + 5751$ ![Copy content]()  ![Toggle raw display]()  |