These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.56a3.1177 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1178 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 20 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1179 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 4 ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1180 |
$( x^{2} + x + 1 )^{8} + 12 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 20 ( x^{2} + x + 1 )^{4} + 16 ( x^{2} + x + 1 )^{3} + 8 ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1257 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1258 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1259 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1260 |
$( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1265 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1266 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1267 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1268 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1269 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1270 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 8 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1271 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 12 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |
| 2.2.8.56a3.1272 |
$( x^{2} + x + 1 )^{8} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{7} + 4 x ( x^{2} + x + 1 )^{6} + 8 ( x^{2} + x + 1 )^{5} + 28 ( x^{2} + x + 1 )^{4} + 24 ( x^{2} + x + 1 )^{3} + \left(8 x + 8\right) ( x^{2} + x + 1 )^{2} + 16 ( x^{2} + x + 1 ) + 2$ |
$C_4^3.D_4$ (as 16T1011) |
$512$ |
$2$ |
$[2, 2, 3, 3, \frac{7}{2}, \frac{7}{2}, \frac{9}{2}, \frac{9}{2}]^{2}$ |
$[1,1,2,2,\frac{5}{2},\frac{5}{2},\frac{7}{2},\frac{7}{2}]^{2}$ |
$[2,2,3,\frac{7}{2},\frac{9}{2}]$ |
$[1,1,2,\frac{5}{2},\frac{7}{2}]$ |
$[21, 14, 8, 0]$ |
$[1, 1, 1]$ |
$z^4 + 1,z^2 + t,t z + 1$ |
$[1, 3, 7, 15]$ |