These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
  
          
                  | Label | 
                  Polynomial $/ \Q_p$ | 
                  Galois group $/ \Q_p$ | 
                  Galois degree $/ \Q_p$ | 
                  $\#\Aut(K/\Q_p)$ | 
                  Artin slope content $/ \Q_p$ | 
                  Swan slope content $/ \Q_p$ | 
                  Hidden Artin slopes $/ \Q_p$ | 
                  Hidden Swan slopes $/ \Q_p$ | 
                  Ind. of Insep. $/ \Q_p$ | 
                  Assoc. Inertia $/ \Q_p$ | 
                  Resid. Poly | 
                  Jump Set | 
              
      
      
              | 2.2.8.44d5.75 | 
              $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ | 
              $C_4:D_4$ (as 16T34) | 
              $32$ | 
              $4$ | 
              $[2, 3, 3, \frac{7}{2}]^{2}$ | 
              $[1,2,2,\frac{5}{2}]^{2}$ | 
              $[3]$ | 
              $[2]$ | 
              $[15, 10, 4, 0]$ | 
              $[1, 1, 1]$ | 
              $z^4 + 1,z^2 + t,t z + (t + 1)$ | 
              $[1, 5, 13, 21]$ | 
          
      
              | 2.2.8.44d5.76 | 
              $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{4} + \left(8 x + 4\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ | 
              $C_4^2:C_2$ (as 16T27) | 
              $32$ | 
              $4$ | 
              $[2, 3, 3, \frac{7}{2}]^{2}$ | 
              $[1,2,2,\frac{5}{2}]^{2}$ | 
              $[3]$ | 
              $[2]$ | 
              $[15, 10, 4, 0]$ | 
              $[1, 1, 1]$ | 
              $z^4 + 1,z^2 + t,t z + (t + 1)$ | 
              $[1, 5, 13, 21]$ | 
          
      
              | 2.2.8.44d5.79 | 
              $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + 2 ( x^{2} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ | 
              $C_4^2:C_2$ (as 16T30) | 
              $32$ | 
              $4$ | 
              $[2, 3, 3, \frac{7}{2}]^{2}$ | 
              $[1,2,2,\frac{5}{2}]^{2}$ | 
              $[3]$ | 
              $[2]$ | 
              $[15, 10, 4, 0]$ | 
              $[1, 1, 1]$ | 
              $z^4 + 1,z^2 + t,t z + (t + 1)$ | 
              $[1, 5, 13, 21]$ | 
          
      
              | 2.2.8.44d5.80 | 
              $( x^{2} + x + 1 )^{8} + 4 x ( x^{2} + x + 1 )^{7} + \left(4 x + 4\right) ( x^{2} + x + 1 )^{6} + \left(8 x + 2\right) ( x^{2} + x + 1 )^{4} + \left(8 x + 12\right) ( x^{2} + x + 1 )^{3} + 4 x ( x^{2} + x + 1 )^{2} + 2$ | 
              $C_2^2.D_4$ (as 16T37) | 
              $32$ | 
              $4$ | 
              $[2, 3, 3, \frac{7}{2}]^{2}$ | 
              $[1,2,2,\frac{5}{2}]^{2}$ | 
              $[3]$ | 
              $[2]$ | 
              $[15, 10, 4, 0]$ | 
              $[1, 1, 1]$ | 
              $z^4 + 1,z^2 + t,t z + (t + 1)$ | 
              $[1, 5, 13, 21]$ |