Properties

Label 2.2.4.12a1.3-1.2.4a
Base 2.2.4.12a1.3
Degree \(2\)
e \(2\)
f \(1\)
c \(4\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{5} \pi^{3} + a_{3} \pi^{2}\right) x + c_{6} \pi^{4} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.2.4.12a1.3
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $4$
Absolute Artin slopes: $[2,2,\frac{5}{2}]$
Swan slopes: $[3]$
Means: $\langle\frac{3}{2}\rangle$
Rams: $(3)$
Field count: $6$ (complete)
Ambiguity: $2$
Mass: $12$
Absolute Mass: $3/2$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $QD_{16}$ (show 1), $Q_{16}$ (show 1), $C_4\wr C_2$ (show 1), $C_4^2:C_4$ (show 1), $C_2^4.Q_{16}$ (show 2)
Hidden Artin slopes: $[\ ]$ (show 2), $[2,2,\frac{5}{2}]^{2}$ (show 2), $[\ ]^{2}$ (show 1), $[2]^{2}$ (show 1)
Indices of inseparability: $[9,6,6,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,9,17]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.32c1.10 $( x^{2} + x + 1 )^{8} + 2 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 ) + 6$ $C_4\wr C_2$ (as 16T42) $32$ $8$ $[2, 2, \frac{5}{2}]^{4}$ $[1,1,\frac{3}{2}]^{4}$ $[\ ]^{2}$ $[\ ]^{2}$ $[9, 6, 6, 0]$ $[1, 1]$ $z^6 + 1,z + 1$ $[1, 3, 9, 17]$
  displayed columns for results