| $x^{4} + a_{3} \pi x^{3} + b_{2} \pi x^{2} + c_{4} \pi^{2} + \pi$ |
The following invariants arise for fields within the LMFDB; since not all fields in this family are stored, it may be incomplete.
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Galois group: | $C_2^3:C_4$ (show 1), $\OD_{16}:C_2$ (show 1), $C_2\wr C_4$ (show 1), $C_2\wr C_4$ (show 2), $D_4\times A_4$ (show 1), $C_2\wr C_6$ (show 4), $C_2^6:C_8$ (show 4) (incomplete) |
| Hidden Artin slopes: | $[2,2,2]^{3}$ (show 4), $[2,2,2]^{4}$ (show 4), $[\ ]^{2}$ (show 2), $[2]^{2}$ (show 3), $[2]^{3}$ (show 1) (incomplete) |
| Indices of inseparability: | $[7,6,4,0]$ (show 9), $[7,6,6,0]$ (show 2), $[7,7,4,0]$ (show 2), $[7,7,7,0]$ (show 1) |
| Associated inertia: | $[2]$ (show 5), $[3]$ (show 5), $[4]$ (show 4) |
| Jump Set: | $[1,2,4,15]$ (show 1), $[1,2,7,14]$ (show 1), $[1,2,7,15]$ (show 1), $[1,2,7,16]$ (show 1), $[1,3,6,15]$ (show 2), $[1,3,7,14]$ (show 1), $[1,3,7,15]$ (show 5), $[1,3,7,16]$ (show 2) |
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.8.28a19.2 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x + 2$ |
$C_2\wr C_4$ (as 16T172) |
$64$ |
$4$ |
$[2, 2, 2, 2]^{4}$ |
$[1,1,1,1]^{4}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + t z^3 + z + t$ |
$[1, 3, 7, 16]$ |
| 2.2.8.28a19.3 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 6$ |
$C_2\wr C_4$ (as 16T171) |
$64$ |
$4$ |
$[2, 2, 2, 2]^{4}$ |
$[1,1,1,1]^{4}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + t z^3 + z + t$ |
$[1, 3, 7, 14]$ |
| 2.2.8.28a19.4 |
$( x^{2} + x + 1 )^{8} + 2 x ( x^{2} + x + 1 )^{7} + 2 ( x^{2} + x + 1 )^{5} + 2 x ( x^{2} + x + 1 )^{4} + 4 x + 6$ |
$C_2\wr C_4$ (as 16T172) |
$64$ |
$4$ |
$[2, 2, 2, 2]^{4}$ |
$[1,1,1,1]^{4}$ |
$[2]^{2}$ |
$[1]^{2}$ |
$[7, 6, 4, 0]$ |
$[2]$ |
$z^7 + t z^3 + z + t$ |
$[1, 3, 7, 16]$ |
Download
displayed columns for
results