These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.2.4.18a2.1 |
$( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.2 |
$( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.3 |
$( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.4 |
$( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.5 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.6 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.7 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.8 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.9 |
$( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.10 |
$( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.11 |
$( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.12 |
$( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(C_4^2 : C_2):C_2$ (as 8T26) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.13 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.14 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.15 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |
| 2.2.4.18a2.16 |
$( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ |
$(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) |
$64$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[2,3,\frac{7}{2}]$ |
$[1,2,\frac{5}{2}]$ |
$[6, 2, 0]$ |
$[1, 1]$ |
$z^2 + t,t z + t$ |
$[1, 3, 7]$ |