Properties

Label 2.2.2.4a2.1-1.2.5a
Base 2.2.2.4a2.1
Degree \(2\)
e \(2\)
f \(1\)
c \(5\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{7} \pi^{4} + b_{5} \pi^{3}\right) x + c_{8} \pi^{5} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.2.2.4a2.1
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $5$
Absolute Artin slopes: $[2,\frac{7}{2}]$
Swan slopes: $[4]$
Means: $\langle2\rangle$
Rams: $(4)$
Field count: $16$ (complete)
Ambiguity: $2$
Mass: $16$
Absolute Mass: $8$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $(C_4^2 : C_2):C_2$ (show 4), $(((C_4 \times C_2): C_2):C_2):C_2$ (show 4), $(((C_4 \times C_2): C_2):C_2):C_2$ (show 4), $(((C_4 \times C_2): C_2):C_2):C_2$ (show 4)
Hidden Artin slopes: $[2,3,\frac{7}{2}]$
Indices of inseparability: $[6,2,0]$
Associated inertia: $[1,1]$
Jump Set: $[1,3,7]$

Fields


Showing all 16

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.4.18a2.1 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.2 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.3 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(C_4^2 : C_2):C_2$ (as 8T26) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.4 $( x^{2} + x + 1 )^{4} + 2 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(C_4^2 : C_2):C_2$ (as 8T26) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.5 $( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.6 $( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.7 $( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.8 $( x^{2} + x + 1 )^{4} + \left(4 x + 2\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.9 $( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.10 $( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T30) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.11 $( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(C_4^2 : C_2):C_2$ (as 8T26) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.12 $( x^{2} + x + 1 )^{4} + 6 ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(C_4^2 : C_2):C_2$ (as 8T26) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.13 $( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.14 $( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T29) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.15 $( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + 2 x ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
2.2.4.18a2.16 $( x^{2} + x + 1 )^{4} + \left(4 x + 6\right) ( x^{2} + x + 1 )^{3} + \left(2 x + 8\right) ( x^{2} + x + 1 )^{2} + 8 ( x^{2} + x + 1 ) + 2$ $(((C_4 \times C_2): C_2):C_2):C_2$ (as 8T28) $64$ $2$ $[2, 2, 3, \frac{7}{2}, \frac{7}{2}]^{2}$ $[1,1,2,\frac{5}{2},\frac{5}{2}]^{2}$ $[2,3,\frac{7}{2}]$ $[1,2,\frac{5}{2}]$ $[6, 2, 0]$ $[1, 1]$ $z^2 + t,t z + t$ $[1, 3, 7]$
  displayed columns for results