These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.60o1.173 |
$x^{16} + 8 x^{13} + 4 x^{12} + 8 x^{10} + 4 x^{8} + 8 x^{6} + 2$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[45, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.60o1.205 |
$x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 8 x^{10} + 12 x^{8} + 8 x^{6} + 16 x^{4} + 16 x + 2$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[45, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.60o1.220 |
$x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{12} + 4 x^{8} + 8 x^{6} + 24 x^{4} + 16 x + 2$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[45, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.60o1.228 |
$x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{12} + 12 x^{8} + 8 x^{6} + 8 x^{4} + 2$ |
$C_2^4:D_4$ (as 16T392) |
$128$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4}]^{2}$ |
$[2,2]^{2}$ |
$[1,1]^{2}$ |
$[45, 38, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |