These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.70e1.1079 |
$x^{16} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 24 x^{4} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1080 |
$x^{16} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 56 x^{4} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1081 |
$x^{16} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 24 x^{4} + 32 x^{3} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1082 |
$x^{16} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 56 x^{4} + 32 x^{3} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1233 |
$x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1234 |
$x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 40 x^{4} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1235 |
$x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 32 x^{3} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.70e1.1236 |
$x^{16} + 8 x^{14} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 40 x^{4} + 32 x^{3} + 18$ |
$C_4^2.(C_2\times D_4)$ (as 16T504) |
$256$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |