Properties

Label 2.1.8.28b1.15-1.2.14a
Base 2.1.8.28b1.15
Degree \(2\)
e \(2\)
f \(1\)
c \(14\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{25} \pi^{13} + b_{23} \pi^{12} + b_{21} \pi^{11} + b_{19} \pi^{10} + b_{17} \pi^{9} + b_{15} \pi^{8} + a_{13} \pi^{7}\right) x + c_{26} \pi^{14} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.28b1.15
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $14$
Absolute Artin slopes: $[3,4,\frac{17}{4},\frac{21}{4}]$
Swan slopes: $[13]$
Means: $\langle\frac{13}{2}\rangle$
Rams: $(13)$
Field count: $80$ (complete)
Ambiguity: $2$
Mass: $64$
Absolute Mass: $32$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_4^2.(C_2\times D_4)$ (show 8), $C_4^2.(C_2\times D_4)$ (show 4), $C_4^2.(C_2\times D_4)$ (show 8), $C_4^2.(C_2\times D_4)$ (show 4), $D_4.C_2\wr C_4$ (show 8), $(C_2^2\times C_4^2).D_4$ (show 8), $(C_2^2\times C_4^2).D_4$ (show 16), $Q_8.C_2\wr C_4$ (show 8), $D_4:C_2^3.D_4$ (show 16)
Hidden Artin slopes: $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ (show 40), $[2,\frac{7}{2},\frac{19}{4}]^{2}$ (show 24), $[2,2,\frac{7}{2},\frac{19}{4}]^{2}$ (show 16)
Indices of inseparability: $[55,42,32,16,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,3,7,15,31]$

Fields


Showing all 16

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.70e1.1007 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 24 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1008 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 56 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1009 $x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 24 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1010 $x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 56 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1011 $x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 24 x^{4} + 32 x^{3} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1012 $x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 56 x^{4} + 32 x^{3} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1021 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 16 x^{2} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1022 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 16 x^{2} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1023 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 32 x^{3} + 16 x^{2} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1024 $x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 32 x^{3} + 16 x^{2} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1121 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1122 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1123 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 32 x^{3} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1124 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 32 x^{3} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1141 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.70e1.1142 $x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 40 x^{4} + 2$ $(C_2^2\times C_4^2).D_4$ (as 16T845) $512$ $4$ $[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ $[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ $[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ $[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ $[55, 42, 32, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
  displayed columns for results