These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.70e1.1007 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 24 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1008 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 56 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1009 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 24 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1010 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 56 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1011 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 24 x^{4} + 32 x^{3} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1012 |
$x^{16} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 56 x^{4} + 32 x^{3} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1021 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 16 x^{2} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1022 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 16 x^{2} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1023 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 32 x^{3} + 16 x^{2} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1024 |
$x^{16} + 16 x^{15} + 16 x^{13} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 32 x^{3} + 16 x^{2} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1121 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1122 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1123 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 32 x^{3} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1124 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 40 x^{4} + 32 x^{3} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1141 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.70e1.1142 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 40 x^{4} + 2$ |
$(C_2^2\times C_4^2).D_4$ (as 16T845) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4},\frac{17}{4}]^{2}$ |
$[2,3,\frac{7}{2},\frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},\frac{15}{4}]^{2}$ |
$[55, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |