These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
2.1.16.66j1.281 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.282 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.D_4$ (as 16T297) |
$128$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,\frac{7}{2}]^{2}$ |
$[1,\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.283 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{4} + 16 x^{3} + 2$ |
$C_4^2:C_4$ (as 16T176) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.284 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{4} + 16 x^{3} + 2$ |
$C_4^2:C_4$ (as 16T176) |
$64$ |
$2$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]$ |
$[2,\frac{7}{2}]$ |
$[1,\frac{5}{2}]$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.285 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.286 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{7} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.287 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.288 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^4.(C_4\times D_4)$ (as 16T824) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, \frac{7}{2}, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},\frac{5}{2},3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,2,\frac{7}{2},\frac{7}{2}]^{2}$ |
$[1,1,\frac{5}{2},\frac{5}{2}]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.289 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.290 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.291 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.292 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.293 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.294 |
$x^{16} + 8 x^{14} + 24 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.295 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.296 |
$x^{16} + 8 x^{14} + 24 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T893) |
$512$ |
$4$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.297 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T874) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.298 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T874) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.299 |
$x^{16} + 8 x^{14} + 8 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T874) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
2.1.16.66j1.300 |
$x^{16} + 8 x^{14} + 8 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{7} + 16 x^{5} + 8 x^{4} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T874) |
$512$ |
$2$ |
$[2, 3, 3, \frac{7}{2}, 4, 4, \frac{17}{4}, \frac{19}{4}]^{2}$ |
$[1,2,2,\frac{5}{2},3,3,\frac{13}{4},\frac{15}{4}]^{2}$ |
$[2,3,\frac{7}{2},4]^{2}$ |
$[1,2,\frac{5}{2},3]^{2}$ |
$[51, 42, 32, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |