These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.66i1.201 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.202 |
$x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.203 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.204 |
$x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.205 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.206 |
$x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.207 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.208 |
$x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.209 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.210 |
$x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.211 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.212 |
$x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.213 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.214 |
$x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.215 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.216 |
$x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.277 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.278 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.279 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.280 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.281 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.282 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.283 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.284 |
$x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ |
$C_2^5:D_8$ (as 16T1017) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |