Select desired size of Galois group.
| Label |
Packet size |
Polynomial |
Galois group |
Galois degree |
$\#\Aut(K/\Q_p)$ |
Artin slope content |
Swan slope content |
Hidden Artin slopes |
Hidden Swan slopes |
Ind. of Insep. |
Assoc. Inertia |
Resid. Poly |
Jump Set |
| 2.1.16.66i1.1 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.2 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.3 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.4 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.5 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.6 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.7 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.8 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.9 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.10 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.11 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.12 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.13 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.14 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.15 |
128 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.16 |
128 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{3} + 2$ |
$C_2^5.(C_2\times D_4)$ (as 16T995) |
$512$ |
$2$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.17 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.18 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.19 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.20 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.21 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.22 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.23 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.24 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.25 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.26 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.27 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.28 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.29 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.30 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.31 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.32 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.33 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.34 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.35 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.36 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.37 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.38 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.39 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.40 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.41 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.42 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.43 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.44 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.45 |
64 |
$x^{16} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.46 |
64 |
$x^{16} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.47 |
64 |
$x^{16} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.48 |
64 |
$x^{16} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 16 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 2$ |
$C_2^3.D_8$ (as 16T339) |
$128$ |
$4$ |
$[2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]$ |
$[1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]$ |
$[2,4,\frac{17}{4}]$ |
$[1,3,\frac{13}{4}]$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.49 |
256 |
$x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |
| 2.1.16.66i1.50 |
256 |
$x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 16 x^{3} + 2$ |
$C_2^6.D_4$ (as 16T940) |
$512$ |
$4$ |
$[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ |
$[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ |
$[2,2,4,\frac{17}{4}]^{2}$ |
$[1,1,3,\frac{13}{4}]^{2}$ |
$[51, 42, 28, 16, 0]$ |
$[1, 1, 1, 1]$ |
$z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ |
$[1, 3, 7, 15, 31]$ |