Properties

Label 2.1.8.28a1.7-1.2.10a
Base 2.1.8.28a1.7
Degree \(2\)
e \(2\)
f \(1\)
c \(10\)

Related objects

Downloads

Learn more

Defining polynomial

$x^{2} + \left(b_{17} \pi^{9} + b_{15} \pi^{8} + b_{13} \pi^{7} + b_{11} \pi^{6} + a_{9} \pi^{5}\right) x + c_{18} \pi^{10} + \pi$

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.28a1.7
Ramification index $e$: $2$
Residue field degree $f$: $1$
Discriminant exponent $c$: $10$
Absolute Artin slopes: $[3,\frac{7}{2},\frac{9}{2},\frac{19}{4}]$
Swan slopes: $[9]$
Means: $\langle\frac{9}{2}\rangle$
Rams: $(9)$
Field count: $24$ (complete)
Ambiguity: $2$
Mass: $16$
Absolute Mass: $8$

Diagrams

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $C_2^6.D_4$ (show 16), $C_2^5:D_8$ (show 8)
Hidden Artin slopes: $[2,2,4,\frac{17}{4}]^{2}$
Indices of inseparability: $[51,42,28,16,0]$
Associated inertia: $[1,1,1,1]$
Jump Set: $[1,3,7,15,31]$

Fields


Showing all 24

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.1.16.66i1.201 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.202 $x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.203 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.204 $x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.205 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.206 $x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.207 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.208 $x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.209 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.210 $x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.211 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.212 $x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.213 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.214 $x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.215 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.216 $x^{16} + 8 x^{14} + 20 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{3} + 2$ $C_2^6.D_4$ (as 16T940) $512$ $4$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.277 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.278 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.279 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.280 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 24 x^{8} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.281 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.282 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.283 $x^{16} + 8 x^{14} + 4 x^{12} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.66i1.284 $x^{16} + 8 x^{14} + 4 x^{12} + 16 x^{11} + 8 x^{10} + 16 x^{9} + 8 x^{8} + 16 x^{6} + 16 x^{5} + 16 x^{3} + 16 x^{2} + 2$ $C_2^5:D_8$ (as 16T1017) $512$ $2$ $[2, 2, 3, \frac{7}{2}, 4, \frac{17}{4}, \frac{9}{2}, \frac{19}{4}]^{2}$ $[1,1,2,\frac{5}{2},3,\frac{13}{4},\frac{7}{2},\frac{15}{4}]^{2}$ $[2,2,4,\frac{17}{4}]^{2}$ $[1,1,3,\frac{13}{4}]^{2}$ $[51, 42, 28, 16, 0]$ $[1, 1, 1, 1]$ $z^8 + 1,z^4 + 1,z^2 + 1,z + 1$ $[1, 3, 7, 15, 31]$
  displayed columns for results