| $x^{2} + \left(b_{13} \pi^{7} + b_{11} \pi^{6} + b_{9} \pi^{5} + a_{7} \pi^{4}\right) x + c_{14} \pi^{8} + \pi$ |
These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.
| Galois group: | $C_2^3.D_4$ (show 2), $C_2^4.D_4$ (show 4), $C_2^5.(C_2\times D_4)$ (show 4) |
| Hidden Artin slopes: | $[2,2,3]^{4}$ (show 4), $[2]^{4}$ (show 4), $[\ ]^{4}$ (show 2) |
| Indices of inseparability: | $[33,26,24,8,0]$ |
| Associated inertia: | $[1,2,1]$ |
| Jump Set: | $[1,5,15,31,47]$ |
| Label |
Polynomial $/ \Q_p$ |
Galois group $/ \Q_p$ |
Galois degree $/ \Q_p$ |
$\#\Aut(K/\Q_p)$ |
Artin slope content $/ \Q_p$ |
Swan slope content $/ \Q_p$ |
Hidden Artin slopes $/ \Q_p$ |
Hidden Swan slopes $/ \Q_p$ |
Ind. of Insep. $/ \Q_p$ |
Assoc. Inertia $/ \Q_p$ |
Resid. Poly |
Jump Set |
| 2.1.16.48o1.21 |
$x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{5} + 8 x^{3} + 8 x + 2$ |
$C_2^3.D_4$ (as 16T148) |
$64$ |
$2$ |
$[2, 3, 3, \frac{7}{2}]^{4}$ |
$[1,2,2,\frac{5}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 15, 31, 47]$ |
| 2.1.16.48o1.22 |
$x^{16} + 4 x^{14} + 4 x^{10} + 2 x^{8} + 8 x^{7} + 8 x^{5} + 8 x^{3} + 8 x + 2$ |
$C_2^3.D_4$ (as 16T148) |
$64$ |
$2$ |
$[2, 3, 3, \frac{7}{2}]^{4}$ |
$[1,2,2,\frac{5}{2}]^{4}$ |
$[\ ]^{4}$ |
$[\ ]^{4}$ |
$[33, 26, 24, 8, 0]$ |
$[1, 2, 1]$ |
$z^8 + 1,z^6 + 1,z + 1$ |
$[1, 5, 15, 31, 47]$ |
Download
displayed columns for
results