Properties

Label 2.1.8.20a1.2-2.1.0a
Base 2.1.8.20a1.2
Degree \(2\)
e \(1\)
f \(2\)
c \(0\)

Related objects

Downloads

Learn more

Invariants

Residue field characteristic: $2$
Degree: $2$
Base field: 2.1.8.20a1.2
Ramification index $e$: $1$
Residue field degree $f$: $2$
Discriminant exponent $c$: $0$
Absolute Artin slopes: $[\frac{20}{7},\frac{20}{7},\frac{20}{7}]$
Swan slopes: $[\ ]$
Means: $\langle\ \rangle$
Rams: $(\ )$
Field count: $1$ (complete)
Ambiguity: $2$
Mass: $1$
Absolute Mass: $1/2$

Varying

These invariants are all associated to absolute extensions of $\Q_{ 2 }$ within this relative family, not the relative extension.

Galois group: $F_8:C_6$
Hidden Artin slopes: $[\ ]^{3}_{7}$
Indices of inseparability: $[13,13,8,0]$
Associated inertia: $[1]$
Jump Set: $[1,3,7,15]$

Fields


Showing all 1

  displayed columns for results
Label Polynomial $/ \Q_p$ Galois group $/ \Q_p$ Galois degree $/ \Q_p$ $\#\Aut(K/\Q_p)$ Artin slope content $/ \Q_p$ Swan slope content $/ \Q_p$ Hidden Artin slopes $/ \Q_p$ Hidden Swan slopes $/ \Q_p$ Ind. of Insep. $/ \Q_p$ Assoc. Inertia $/ \Q_p$ Resid. Poly Jump Set
2.2.8.40a1.3 $( x^{2} + x + 1 )^{8} + 4 ( x^{2} + x + 1 )^{6} + 4 ( x^{2} + x + 1 )^{5} + 2$ $F_8:C_6$ (as 16T712) $336$ $2$ $[\frac{20}{7}, \frac{20}{7}, \frac{20}{7}]_{7}^{6}$ $[\frac{13}{7},\frac{13}{7},\frac{13}{7}]_{7}^{6}$ $[\ ]^{3}_{7}$ $[\ ]^{3}_{7}$ $[13, 13, 8, 0]$ $[1]$ $z + 1$ $[1, 3, 7, 15]$
  displayed columns for results